1,284 research outputs found

    Using Ontology Fingerprints to evaluate genome-wide association study results

    Get PDF
    We describe an approach to characterize genes or phenotypes via ontology fingerprints which are composed of Gene Ontology (GO) terms overrepresented among those PubMed abstracts linked to the genes or phenotypes. We then quantify the biological relevance between genes and phenotypes by comparing their ontology fingerprints to calculate a similarity score. We validated this approach by correctly identifying genes belong to their biological pathways with high accuracy, and applied this approach to evaluate GWA study by ranking genes associated with the lipid concentrations in plasma as well as to prioritize genes within linkage disequilibrium (LD) block. We found that the genes with highest scores were: ABCA1, LPL, and CETP for HDL; LDLR, APOE and APOB for LDL; and LPL, APOA1 and APOB for triglyceride. In addition, we identified some top ranked genes linking to lipid metabolism from the literature even in cases where such knowledge was not reflected in current annotation of these genes. These results demonstrate that ontology fingerprints can be used effectively to prioritize genes from GWA studies for experimental validation

    Integration of the Gene Ontology into an object-oriented architecture

    Get PDF
    BACKGROUND: To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO) has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. RESULTS: Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta) receptor complex assembly" (GO:0007181). CONCLUSION: We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes

    Genome3D: A Viewer-Model Framework for Integrating and Visualizing Multi-Scale Epigenomic Information within a Three-Dimensional Genome

    Get PDF
    Background New technologies are enabling the measurement of many types of genomic and epigenomic information at scales ranging from the atomic to nuclear. Much of this new data is increasingly structural in nature, and is often difficult to coordinate with other data sets. There is a legitimate need for integrating and visualizing these disparate data sets to reveal structural relationships not apparent when looking at these data in isolation. Results We have applied object-oriented technology to develop a downloadable visualization tool, Genome3D, for integrating and displaying epigenomic data within a prescribed three-dimensional physical model of the human genome. In order to integrate and visualize large volume of data, novel statistical and mathematical approaches have been developed to reduce the size of the data. To our knowledge, this is the first such tool developed that can visualize human genome in three-dimension. We describe here the major features of Genome3D and discuss our multi-scale data framework using a representative basic physical model. We then demonstrate many of the issues and benefits of multi-resolution data integration. Conclusions Genome3D is a software visualization tool that explores a wide range of structural genomic and epigenetic data. Data from various sources of differing scales can be integrated within a hierarchical framework that is easily adapted to new developments concerning the structure of the physical genome. In addition, our tool has a simple annotation mechanism to incorporate non-structural information. Genome3D is unique is its ability to manipulate large amounts of multi-resolution data from diverse sources to uncover complex and new structural relationships within the genome

    Consistent Differential Expression Pattern (CDEP) on microarray to identify genes related to metastatic behavior

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To utilize the large volume of gene expression information generated from different microarray experiments, several meta-analysis techniques have been developed. Despite these efforts, there remain significant challenges to effectively increasing the statistical power and decreasing the Type I error rate while pooling the heterogeneous datasets from public resources. The objective of this study is to develop a novel meta-analysis approach, Consistent Differential Expression Pattern (CDEP), to identify genes with common differential expression patterns across different datasets.</p> <p>Results</p> <p>We combined False Discovery Rate (FDR) estimation and the non-parametric RankProd approach to estimate the Type I error rate in each microarray dataset of the meta-analysis. These Type I error rates from all datasets were then used to identify genes with common differential expression patterns. Our simulation study showed that CDEP achieved higher statistical power and maintained low Type I error rate when compared with two recently proposed meta-analysis approaches. We applied CDEP to analyze microarray data from different laboratories that compared transcription profiles between metastatic and primary cancer of different types. Many genes identified as differentially expressed consistently across different cancer types are in pathways related to metastatic behavior, such as ECM-receptor interaction, focal adhesion, and blood vessel development. We also identified novel genes such as <it>AMIGO2</it>, <it>Gem</it>, and <it>CXCL11 </it>that have not been shown to associate with, but may play roles in, metastasis.</p> <p>Conclusions</p> <p>CDEP is a flexible approach that borrows information from each dataset in a meta-analysis in order to identify genes being differentially expressed consistently. We have shown that CDEP can gain higher statistical power than other existing approaches under a variety of settings considered in the simulation study, suggesting its robustness and insensitivity to data variation commonly associated with microarray experiments.</p> <p><b>Availability</b>: CDEP is implemented in R and freely available at: <url>http://genomebioinfo.musc.edu/CDEP/</url></p> <p><b>Contact</b>: [email protected]</p

    Improving Transmission Efficiency of Large Sequence Alignment/Map (SAM) Files

    Get PDF
    Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly

    Combining comparative genomics with de novo motif discovery to identify human transcription factor DNA-binding motifs

    Get PDF
    BACKGROUND: As more and more genomes are sequenced, comparative genomics approaches provide a methodology for identifying conserved regulatory elements that may be involved in gene regulations. RESULTS: We developed a novel method to combine comparative genomics with de novo motif discovery to identify human transcription factor binding motifs that are overrepresented and conserved in the upstream regions of a set of co-regulated genes. The method is validated by analyzing a well-characterized muscle specific gene set, and the results showed that our approach performed better than the existing programs in terms of sensitivity and prediction rate. CONCLUSION: The newly developed method can be used to extract regulatory signals in co-regulated genes, which can be derived from the microarray clustering analysis

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    FAK acts as a suppressor of RTK-MAP kinase signalling in Drosophila melanogaster epithelia and human cancer cells

    Get PDF
    Receptor Tyrosine Kinases (RTKs) and Focal Adhesion Kinase (FAK) regulate multiple signalling pathways, including mitogen-activated protein (MAP) kinase pathway. FAK interacts with several RTKs but little is known about how FAK regulates their downstream signalling. Here we investigated how FAK regulates signalling resulting from the overexpression of the RTKs RET and EGFR. FAK suppressed RTKs signalling in Drosophila melanogaster epithelia by impairing MAPK pathway. This regulation was also observed in MDA-MB-231 human breast cancer cells, suggesting it is a conserved phenomenon in humans. Mechanistically, FAK reduced receptor recycling into the plasma membrane, which resulted in lower MAPK activation. Conversely, increasing the membrane pool of the receptor increased MAPK pathway signalling. FAK is widely considered as a therapeutic target in cancer biology; however, it also has tumour suppressor properties in some contexts. Therefore, the FAK-mediated negative regulation of RTK/MAPK signalling described here may have potential implications in the designing of therapy strategies for RTK-driven tumours
    corecore